If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8t^2-48t+10=0
a = 8; b = -48; c = +10;
Δ = b2-4ac
Δ = -482-4·8·10
Δ = 1984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1984}=\sqrt{64*31}=\sqrt{64}*\sqrt{31}=8\sqrt{31}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48)-8\sqrt{31}}{2*8}=\frac{48-8\sqrt{31}}{16} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48)+8\sqrt{31}}{2*8}=\frac{48+8\sqrt{31}}{16} $
| 6(-4n-2)=9-3n | | 73f+71=73f+7 | | 4.8r+6=27 | | -1=5s | | -4=5-8x | | 3(y+5)=-2(3y-6) | | 3x+16=16x+3 | | -1=h+56/3 | | 73f+71=73f+71 | | 15y+4=45 | | t/6+87=95 | | 3x-1.2(4)=1.2 | | 73f+2=144f+71 | | 3x-1.2x4=1.2 | | c/5-24=-15 | | 73f+144=2f+71 | | 0=2s+-6 | | 7(3x-5)=21x+ | | 12=h/2+9 | | 8+u=18 | | t^2-13.9t-13.9=0 | | |x|=17 | | -5x+8=4x-1 | | 293x-4)+5(2x+30=-9 | | 3(-2)-1.2y=1.2 | | 13.25=2g+3.51 | | 1.25t^2-11.11t-11.11=0 | | 21=4e | | 3x+53+7x-55=180 | | 195=90+(15+7)w | | -6(f+7)=-4f-2 | | t^2-9.25t-9.25=0 |